1 | INTRODUCTION

Hamstring injuries are the most common time-loss injury in elite Gaelic football. The median rate of hamstring injuries is nine per team-season, affecting 21% of players and accounting for 33% of player unavailability. Despite interventions showing efficacy in reducing risk of hamstring injuries, rates appear to be increasing in elite Gaelic football and elite soccer.

Modifiable risk factors for hamstring injuries have been identified in elite field sports using metrics derived from an eccentric knee flexor strength assessment. For example, in elite rugby union, eccentric strength imbalances of ≥10% and ≥15% were associated with a relative risk (RR) of 1.4 and 2.4 for future injury, respectively. Similarly, preseason eccentric hamstring strength levels of <256 N were associated with increased injury risk in elite Australian football players (RR = 2.7). Elite soccer players with eccentric hamstring strength levels of <337 N have also been identified as being more susceptible to injury (RR = 4.4) than their stronger peers. Conversely, risk of sustaining a hamstring injury did not differ between professional soccer players with low...
(<1SD below the mean) or high (>1SD above the mean) pre-
season eccentric hamstring strength levels.7

To date, only one risk factor for sustaining a hamstring in-
jury has been identified in elite Gaelic football.1 Specifically,
players with a previous hamstring injury were 3.3 times more
likely to sustain a hamstring injury within the subsequent sea-
son compared to their uninjured counterparts. However, 64%
of hamstring injuries are not recurrent.1 Thus, there is a need
to identify high risk players using factors other than injury
history. Therefore, the aim of the current study was to evalu-
ate whether eccentric knee flexor strength and between-limb
imbalances increased risk of sustaining a hamstring injury in
elite Gaelic football.

2 MATERIALS AND METHODS

A total of 185 elite Gaelic football players (26.9 ± 2.7 years,
86.4 ± 6.2 kg, 183.4 ± 5.6) from five separate adult teams
participated in the study. Three teams played senior level
(n = 118), while two teams played under-20 level (ie, the next
most senior grade) (n = 68). This represents 17% of elite senior
division one and two players and 8% of elite U20 players.

All players previously participated in a separate investi-
gation aiming to report eccentric knee flexor strength values
of elite Gaelic football players from underage to adult level
while also examining the influence of body mass and previ-
ous hamstring injury.8

2.1 Assessment

Testing was completed in preseason (November 20 to
January 5; n = 161; 87%) or National League (March 20;
n = 24; 13%) cycles at dates convenient to team schedules.
The main competitive cycle began on May 6.

Players were required to complete a questionnaire prior
to strength testing to establish their dominant leg and previ-
ous injury history. The Oslo Sports Trauma Research Center
questionnaire on health problems was completed as de-
scribed by the London 2012 Injury and Illness Surveillance
Project.9 Questions focused on four domains: participation
in normal training and competition during the past week,
training volume during the past week, performance during
the past week, and symptoms/health complaints during the
past week. Substantial health problems were classified as
any injury or illness “leading to moderate or severe reduc-
tions in training volume, or moderate or severe reductions
in sports performance, or complete inability to participate
in sport.”9

A prototype of the portable strength testing device
(Nordbord, Vald Performance) has previously shown to
display high-to-moderate reliability (intraclass correlation
coefficient = .83-.90; typical error, 21.7-27.5 N; typical error
as a coefficient of variation, 5.8%-8.5%).10 A prior investiga-
tion involving the current participants also found that body
mass accounted for only 3% of the variance in maximum ec-
centric knee flexor force among elite Gaelic football players
aged >21 years.8

A previously described protocol was utilized for the
current study.8 That is, following a warm-up set, partici-
pants performed one set of three maximal repetitions of the
Nordic hamstring exercise on the device. Beyond this, we
were unable to account for familiarity with the exercise.
Raw data were exported into a customized spreadsheet
(Microsoft). All testing was conducted by MR on a sin-
gle device transported to multiple locations. Data relating
to maximum force and average force for each leg, as well
as between-limb imbalances, were derived from the excel
sheet.

2.2 Injury reporting

Injury data were provided by the team medical staff. Injury
diagnosis was made by the team chartered physiotherapist
or medical doctor. Hamstring injuries were recorded using
time-loss definition, that is, as preventing a player from tak-
ing a full part in all training and match play activities typi-
cally planned for that day, where the injury has been there for
a period >24 hours from midnight at the end of the day that
the injury was sustained.11

An observation period of 12 weeks from the day of test-
ing as team personnel could not guarantee access for repeat
testing. Additionally, significant changes in eccentric knee
flexor strength have been reported within 16 weeks.5 Thus,
we could not account for changes in strength at or beyond this
time point as no follow-up testing could be completed.

2.3 Data analysis

All data were analyzed using SPSS (version 21.0; IBM, Inc).
Figures were generated using previously published code.12
Descriptive statistics were used to report performance mark-
ers. Data are presented as mean values with standard devia-
tions and 95% confidence intervals (95% CI). Confidence
intervals are reported to understand the range surrounding
the mean values for each investigated metrics. Strength met-
rics are presented as interquartile ranges (IQR) and mean be-
tween left and right limbs. The maximum and average forces
between limbs across all three repetitions were compared
to report percentage imbalances. Between-limb imbalances
were calculated using the following formula: (maximum
value – minimum value)/ maximum value.
Players with a previous hamstring injury within 12 months prior to testing were compared to their uninjured peers using the mean values for maximum and average force of both limbs. Return to sport was confirmed once medical clearance was obtained for full, unrestricted participation in all team training and matches.

An independent-samples t test was used to compare mean values between the following data: players with and without a substantial problem at testing, players with and without a previous hamstring injury, players that did and did not sustain a hamstring injury during the study period, and limbs that did and did not sustain a hamstring injury during the study period. Players were allocated to specific sub-groups based on demographic information (ie, age, playing position) and eccentric knee flexor strength quartile ranges. A linear regression was used to evaluate the likelihood of sustaining a hamstring injury relative to all other sub-groups based on quartiles. Significance was set at a $P < .05$.

In total, three outcomes metrics were used to investigate the risk within and between sub-groups: risk (ie, likelihood of sustaining a time-loss hamstring injury occurring within 12 weeks from testing), odds ratio (ie, odds of sustaining an injury in a specific sub-group relative to all others), and post-test probability (ie, likelihood of sustaining injury given the known population prevalence and individual test result).

2.4 Ethical approval

Player anonymity was maintained and data protection assured in accordance with ethical approval received from the University Research Ethics Committee.

3 | RESULTS

3.1 Injury history in the 12 months prior to testing

In total, 185 elite male Gaelic football players participated in the study. Sixty percent of players ($n = 111$) sustained a previous time-loss injury in the 12 months prior to testing. One-in-four players (25.4%; $n = 47$) sustained a previous hamstring time-loss injury within 12 months prior to testing. The proportion of previous hamstring time-loss injuries classified as mild (1-7 days), moderate (7-28 days), or severe (>28 days) was 15.5%, 38.2%, and 46.4%, respectively.

The mean period between return to sport following a prior hamstring injury and testing was 23 weeks (95% CI 18-28). The proportion of players that returned to sport following hamstring time-loss injury within 4 weeks, 5-16 weeks, or 17-52 weeks prior to testing was 20.5%, 28.2%, and 51.3%, respectively.

3.2 Musculo-skeletal complaints in the 7 days prior to testing

Symptoms and health complaints during the 7 days prior to testing were reported by 35.7% (95% CI 30.1-41.3) of players. The prevalence of difficulties in normal training and competition due to injury, illness, or health problems in the 7 days prior to testing was 35.7% (95% CI 30.1-41.3). However, 40.8% (95% CI 35.1-46.5) reported training volume reductions and 31.6% (26.2-37.1) reported performance reductions due to health problems during the same period. Substantial problems were reported in 15.1% (95% CI 10.0-20.3) of players ($n = 28$). None of these health problems required more than 24-hours time-loss from sport. Thus, no participant was excluded on the basis of this questionnaire as all had medical clearance to participate in unrestricted training and competition.

3.3 Eccentric knee flexor strength during testing

The mean between-limb maximum force was 363 ± 86 N (95% CI 349-375), while average force was 336 ± 86 N (95% CI 323-348). The between-limb imbalances associated with maximum and average forces were $9.2\% \pm 7.2$ (95% CI 8.2-10.3) and $8.9\% \pm 6.9$ (95% CI 7.9-10.0), respectively.

No differences in between-limb maximum force ($P = .430$), average force ($P = .693$), maximum force imbalances ($P = .064$), or average force imbalances ($P = .401$) were found between players tested at preseason or early National League cycle (Table 1).

3.4 Injury history and eccentric knee flexor strength during testing

No differences in between-limb maximum force ($P = .461$), average force ($P = .761$), maximum force imbalances ($P = .662$), or average force imbalances ($P = .367$) were found between players with or without substantial problems in the week prior to testing. Confidence intervals in Table 1 also indicate that a previous time-loss injury in the 12 months prior to testing had no difference on eccentric knee flexor strength.

3.5 Injury outcomes following testing

Twenty-eight players (15.7%; 95% CI 12.0-19.4) sustained a time-loss hamstring injury following testing. Hamstring injury risk was 16.4% (95% CI 11.1-21.7) among senior players and 14.5% (95% CI 9.4-19.6) among under-20...
Hamstring injury risk was 15.5% (95% CI 10.3-20.7) and 16.7% (95% CI 11.3-20.3) among players tested at preseason and National League cycles, respectively. The proportion of hamstring time-loss injuries classified as mild (1-7 days), moderate (7-28 days), or severe (>28 days) was 21.4% (n = 6), 60.7% (n = 17), and 17.9% (n = 5), respectively.

3.6 Associations with hamstring injury

Players that did not sustain a hamstring injury had greater average between-limb asymmetries (uninjured group = 9.1%, 95% CI 7.8-10.1; injured group = 5.1%, 95% CI 3.7-6.7; P = .001). No other differences were found between groups.

No statistically significant (P = .585) max force differences were found between injured (354 N, 95% CI 326-382) and uninjured limbs (364 N, 95% CI 355-374) (Figure 1). Likewise, no statistically significant (P = .704) average force differences were found between injured (330 N, 95% CI 300-357) and uninjured limbs (336 N, 95% CI 327-347). A hamstring injury occurred in 7.0% (95% CI 2.9-11.0; n = 12) of limbs that generated greater max force than the contralateral side. On average, these stronger limbs that sustained a hamstring injury produced 6.0% (95% CI 4.3-7.5) more force during testing in comparison with the contralateral side.

FIGURE 1 Eccentric knee flexor strength in injured and uninjured sub-groups. Data points represent test results for individual participants (n = 185) according to (A) maximum force imbalance (%) between limbs per player, (B) maximum force averaged between two limbs per player, and (C) maximum force per limb. Straight lines represent median values. Dashed lines represent interquartile ranges.
Similarly, a hamstring injury occurred in 8.8% (95% CI 4.7-13.5; n=15) of limbs that generated less max force than the contralateral side. On average, weaker limbs that sustained a hamstring injury produced 7.9% (95% CI 5.3-11.2) less force during testing in comparison with the contralateral side.

Player demographics (Table 2), strength metrics (Table 3), and expressing an individual’s strength profile relative to all other players (Table S1) or their teammates (Table S2) did not assist in identifying those at increased risk.

4 | DISCUSSION

The aim of the current study was to evaluate whether knee flexor strength altered susceptibility to hamstring injury in elite Gaelic football. No investigated demographic or eccentric knee flexor strength metric was associated with hamstring injury risk. Thus, the current study does not support the use of eccentric knee flexor strength monitoring to determine the injury risk among elite Gaelic football players.

4.1 | Base rate

Overall, 16% of elite Gaelic football players sustained a hamstring injury during a 12-week period. This level of risk is similar to previous reports in elite Gaelic football (21%, 95% CI 19-23). Thus, it appears that 80%-84% of players will not sustain a hamstring injury each season.

Practitioners should be aware that a previous epidemiological investigation established that in elite Gaelic football, the median number of time-loss hamstring injuries per team is 9 each season. Considering a team of 38 players may complete 100 sessions per season with 80% player availability (3800 player sessions × 80% = 3040 player sessions), the estimated risk of hamstring injury in any given player session is 0.3%. Framing the risk of hamstring injury in this manner may assist in developing realistic expectations when investigating risk factors for exceptionally rare events.

4.2 | Comparing findings to previous investigations

The findings of the current study do not support the modification of hamstring injury risk management strategies based on eccentric knee flexor strength metrics. No association with eccentric knee flexor strength and hamstring injury risk was also observed in elite Qatari soccer players (n = 544 player seasons; 12% risk). However, among elite rugby union players (n = 178; 11% risk), in a sub-group with between-limb imbalances >20% (28% of the sample), hamstring injury risk was 3.4 times (95% CI 1.5-7.6) greater relative to other players. Similarly, in elite Australian soccer (n = 152; 18% risk), players with maximum eccentric knee flexor strength...
<337 N (63% of sample) had a RR of 4.4 (95% CI 1.7-17.5) compared to other players. Likewise, in a study on elite AFL players (n = 21; 13% risk), a threshold of <256 N (39% of sample) was associated with a RR of 2.7 (95% CI 1.3-5.5). As injuries happen to individual athletes, and not to organizations or teams, the ranges of screening test scores associated with injury need to be considered if these data are to inform athlete management strategies. Despite statistically significant differences between mean eccentric knee flexor strength of injured and uninjured limbs being previously reported in elite rugby union, wide ranges are observed when the standard deviation is considered for injured limbs (274-436 N), uninjured limbs of injured players (278-542 N), and limbs of uninjured players (283-453 N). Similar ranges were reported in elite Australian soccer players for injured limbs (178-344 N), uninjured limbs of injured players (200-326 N), and limbs of uninjured players (237-383 N). Likewise, profiles in elite soccer players from Qatar also overlapped for injured limbs (245-379 N), uninjured limbs of injured players (241-363 N), and limbs of uninjured players (228-370 N). These wide ranges question the practical utility in correctly identifying athletes at increased risk of hamstring injury by using an eccentric knee flexor strength test.

TABLE 3 Relationship between eccentric knee flexor strength and hamstring injury risk in elite Gaelic football

<table>
<thead>
<tr>
<th>Between-limb max force</th>
<th>Number of players</th>
<th>Number of uninjured players</th>
<th>Number of players with 1+ hamstring injury</th>
<th>Sub-group risk</th>
<th>Risk to other players</th>
<th>Odds ratio</th>
<th>Post-test probability</th>
</tr>
</thead>
<tbody>
<tr>
<td><296 N</td>
<td>46</td>
<td>39</td>
<td>7</td>
<td>15.2% (10.0-20.4)</td>
<td>15.8% (10.6-21.1)</td>
<td>0.95 (0.38-2.41)</td>
<td>18.0% (12.4-23.5)</td>
</tr>
<tr>
<td>296-368 N</td>
<td>47</td>
<td>39</td>
<td>8</td>
<td>17.0% (11.6-22.4)</td>
<td>15.2% (10.4-20.4)</td>
<td>1.14 (0.47-2.79)</td>
<td>20.5% (14.7-26.3)</td>
</tr>
<tr>
<td>369-430 N</td>
<td>45</td>
<td>38</td>
<td>7</td>
<td>15.6% (10.3-20.8)</td>
<td>15.7% (10.5-21.0)</td>
<td>0.99 (0.39-2.49)</td>
<td>18.4% (12.8-24.0)</td>
</tr>
<tr>
<td>>430 N</td>
<td>47</td>
<td>40</td>
<td>7</td>
<td>14.9% (9.8-20.0)</td>
<td>15.9% (10.7-21.1)</td>
<td>0.92 (0.37-2.32)</td>
<td>17.5% (12.0-23.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Between-limb max force</th>
<th>Number of players</th>
<th>Number of uninjured players</th>
<th>Number of players with 1+ hamstring injury</th>
<th>Sub-group risk</th>
<th>Risk to other players</th>
<th>Odds ratio</th>
<th>Post-test probability</th>
</tr>
</thead>
<tbody>
<tr>
<td><3.8%</td>
<td>43</td>
<td>37</td>
<td>6</td>
<td>14.0% (9.0-19.0)</td>
<td>16.2% (10.9-21.5)</td>
<td>0.84 (0.32-2.22)</td>
<td>16.2% (10.9-21.5)</td>
</tr>
<tr>
<td>3.8%-8.0%</td>
<td>62</td>
<td>48</td>
<td>14</td>
<td>22.6% (16.6-28.6)</td>
<td>12.2% (7.5-16.9)</td>
<td>2.10 (0.94-4.69)</td>
<td>10.4% (6.0-14.8)</td>
</tr>
<tr>
<td>8.1%-13.2%</td>
<td>36</td>
<td>30</td>
<td>6</td>
<td>16.7% (11.3-22.0)</td>
<td>15.4% (10.2-20.6)</td>
<td>1.10 (0.41-2.930)</td>
<td>20.0% (14.2-25.8)</td>
</tr>
<tr>
<td>>13.2%</td>
<td>44</td>
<td>41</td>
<td>3</td>
<td>13.3% (8.5-18.2)</td>
<td>26.3% (20.0-32.6)</td>
<td>0.43 (0.14-1.31)</td>
<td>15.4% (10.2-20.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average force imbalance</th>
<th>Number of players</th>
<th>Number of uninjured players</th>
<th>Number of players with 1+ hamstring injury</th>
<th>Sub-group risk</th>
<th>Risk to other players</th>
<th>Odds ratio</th>
<th>Post-test probability</th>
</tr>
</thead>
<tbody>
<tr>
<td><3.7%</td>
<td>46</td>
<td>38</td>
<td>8</td>
<td>17.4% (11.9-22.9)</td>
<td>15.1% (10.0-20.3)</td>
<td>1.18 (0.48-2.89)</td>
<td>21.1% (15.2-26.9)</td>
</tr>
<tr>
<td>3.7%-7.0%</td>
<td>48</td>
<td>37</td>
<td>11</td>
<td>22.9% (16.9-29.0)</td>
<td>13.1% (8.3-18.0)</td>
<td>1.97 (0.85-4.53)</td>
<td>29.7% (23.1-36.3)</td>
</tr>
<tr>
<td>7.1%-13.0%</td>
<td>51</td>
<td>43</td>
<td>8</td>
<td>15.7% (10.5-20.9)</td>
<td>15.7% (10.4-20.9)</td>
<td>1.00 (0.41-2.43)</td>
<td>18.6% (13.0-24.2)</td>
</tr>
<tr>
<td>>13.0%</td>
<td>40</td>
<td>38</td>
<td>2</td>
<td>5.0% (1.9-8.1)</td>
<td>18.6% (13.0-24.2)</td>
<td>0.23 (0.05-1.01)</td>
<td>5.3% (2.1-8.5)</td>
</tr>
</tbody>
</table>

Note: Data are mean values with 95% confidence intervals (95% CI). Risk refers to probability of sustaining a time-loss hamstring injury within 12 wk from testing.

<337 N (63% of sample) had a RR of 4.4 (95% CI 1.7-17.5) compared to other players. Likewise, in a study on elite AFL players (n = 21; 13% risk), a threshold of <256 N (39% of sample) was associated with a RR of 2.7 (95% CI 1.3-5.5).

As injuries happen to individual athletes, and not to organizations or teams, the ranges of screening test scores associated with injury need to be considered if these data are to inform athlete management strategies. Despite statistically significant differences between mean eccentric knee flexor strength of injured and uninjured limbs being previously reported in elite rugby union, wide ranges are observed when the standard deviation is considered for injured limbs (274-436 N), uninjured limbs of injured players (278-542 N), and limbs of uninjured players (283-453 N).

Similar ranges were reported in elite Australian soccer players for injured limbs (178-344 N), uninjured limbs of injured players (200-326 N), and limbs of uninjured players (237-383 N). Likewise, profiles in elite soccer players from Qatar also overlapped for injured limbs (245-379 N), uninjured limbs of injured players (241-363 N), and limbs of uninjured players (228-370 N). These wide ranges question the practical utility in correctly identifying athletes at increased risk of hamstring injury by using an eccentric knee flexor strength test.

Between-limb imbalances indicate the magnitude of difference in strength between limb; however, the arbitrariness of strength cut-off values remains a contentious issue. A threshold of 20% has been previously used to indicate significant clinical weakness between limbs. Figure 1 indicates that no player with an imbalance >20% sustained a hamstring injury. Similarly, Table 2 indicates that 90% (26/29) of hamstring injuries were sustained by players with a between-limb imbalance <13.2%. Thus, unilateral hamstring weakness, as measured during the current bilateral eccentric knee flexor test, appears not to increase the risk of sustaining a subsequent hamstring injury.

4.3 Health problems and injury prior to testing

In the current study, 41% of players reported reduced training volumes due to physical complaints experienced within the 7 days prior to testing. However, eccentric knee flexor strength metrics did not differ between groups that did or did not report substantial health problems in the 7 days prior to testing.

One-in-four players had sustained a hamstring within the 12 months prior to testing; however, the average time...
since return to sport was 23 weeks. We previously reported no statistically significant difference in maximum eccentric knee flexor strength between elite Gaelic football players with a previous hamstring injury (367 N; 95% CI 347-387) compared to their uninjured peers (350 N; 95% CI 338-362).8

The current study also found that injury history did not alter the risk of sustaining a hamstring injury. The lack of effect of previous injury on subsequent risk may be attributable to findings in previous epidemiological investigations in elite Gaelic football that found most players will have sustained an injury in the 12 months prior to testing.15 Thus, among populations with a high risk of injury, classifying risk profiles on the basis of prior injury may be of limited value, as most of the population will have already been affected in the past.

4.4 Follow-up time to achieve meaningful differences

The current study followed elite Gaelic football players for 12 weeks following testing. This is shorter than observational periods used in elite Australian football (16-28 weeks), elite Australian soccer (8-32 weeks), and elite Qatari soccer (44 weeks).5,7 However, among elite AFL players, eccentric knee flexor strength can increase by 10% within 16 weeks from 301 ± 84 N to 330 ± 73 N following preseason training.7 Similarly, in recreationally active males, exposure to low- or high-volume eccentric strength training can increase in eccentric knee flexor strength by 142 N (95% CI 49-235) and 112 N (95% CI 19-204) within 6 weeks, respectively.16 Thus, future studies should consider establishing the minimum time to observe a change in performance beyond the typical error of measurement and deploy these findings in risk factor identification studies using ongoing athlete screening.

4.5 Remembering the mechanism of injury

Three-in-four hamstring injuries in elite Gaelic football occur during running-related tasks.1 Despite positive associations reported between rate of force development during a prone isometric hamstring strength test and sprint performance, 78%-83% of the variance in sprint performance is explained by factors other than isometric strength.y17 Thus, understanding the factors causing sprinting performance, a task completed thousands of times without the onset of injury or related symptoms, to lead to injury may be a more insightful approach to monitoring hamstring injury risk than strength testing.

5 PERSPECTIVE

The current study investigated whether knee flexor strength and between-limb imbalances impact susceptibility to hamstring injury in elite Gaelic football. No relationship was found in a sample of 185 players followed for 12 weeks following testing. Practitioners should avoid anchoring their perceptions of an athlete’s risk of sustaining a hamstring injury using eccentric knee flexor strength data.

ACKNOWLEDGEMENTS

MR received an unrestricted educational grant from the Gaelic Athletic Association. The authors wish to thank the participating team staff and players for their contribution to the current research project.

ORCID

Mark Roe https://orcid.org/0000-0001-6615-2283
Shane Malone https://orcid.org/0000-0002-0177-9365

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.
